Professor Cardy

web
statistics

Já tratei da decomposição de um número natural em fatores primos. Isso certamente é suficiente para obter o mdc entre dois ou vários números naturais. No entanto, para obter o mdc entre dois números naturais muito grandes isso fica complicado porque a decomposição pode não ser imediata.

O método a seguir é baseado no livro sétimo dos Elementos de Euclides. Apesar de existirem evidências históricas que este método seja anterior a este livro... O Algoritmo de Euclides para a obtenção do máximo divisor comum entre dois números naturais é um processo bem simples. Não desista ao ler a explicação pelo roteiro, mas acompanhe o roteiro juntamente com os exemplos numéricos que virão a seguir - vai ficar bem mais fácil.

Roteiro

Obtendo o mdc entre dois números naturais `X` e `Y` onde `X > Y`.

1) Divida `X` por `Y` e obtenha o resto `R_1`. Se `R_1` for zero, o mdc entre `X` e `Y` é `Y`.

2) Se `R_1` não for zero, divida `Y` por `R_1` e obtenha o resto `R_2`. Se `R_2` for zero, o mdc entre `X` e `Y` é `R_1`.

3) `R_2` não for zero, divida `R_1` por `R_2` e obtenha o resto `R_3`. Se `R_3` for zero, o mdc entre `X` e `Y` é `R_2`.

...

Se `R_n` ão for zero, divida `R_{n-1}` por `R_n` e obtenha o resto `R_{n+1}`. Se `R_{n+1}` for zero, o mdc entre `X` e `Y` é `R_n`

1

Exemplo 1


Obter, pelo Algoritmo de Euclides, o mdc entre 10 e 15.


Resolução

Dividimos 15 por 10 (porque 15 é maior que 10).

dividendo divisor
15 10
5 1
resto quociente

 

Como o resto é 5 (não vale zero), devemos dividir o divisor 10 por 5, temos:

dividendo divisor
10 5
0 2
resto quociente

 

O resto é zero, portanto o mdc entre 15 e 10 é 5 (o divisor da divisão cujo resto é zero).

→ Confira com uma calculadora de mmc ou de mdc entre dois números naturais clique aqui

O Algoritmo de Euclides pode requistar muitas divisões sucessivas até que se chegue ao resto zero (sempre se chegará). Por conta disso, é melhor usar uma chave que aproveita melhor os resultados anteriores e deixa espaço para os próximos, caso sejam necessários.

Monte uma grade com, pelo menos, 3 colunas e exatamente 3 linhas (deixe espaço à direita):

       
       
       

Na grade, insira o 15 e o 10 (vou manter os números do exemplo) assim:

       
15 10    
       

Sempre na primeira linha, sobre o último divisor usado, escreva o quociente da divisão atual. Na divisão de 15 por 10 o quociente é 1. Registre assim:

  1    
15 10    
       

O resto da divisão atual é registrado abaixo do dividendo da divisão atual. Na divisão de 15 por 10 o resto é 5.

  1    
15 10    
5      

Como 5 não é zero, compiamos o 5 ao lado do 10, na próxima casa. Repete-se todo o processo anterior, pensando que a divisão de agora é de 10 por 5.

  1    
15 10 5  
5      

Na divisão de 10 por 5 o quociente é 2. Registre assim:

  1 2  
15 10 5  
5      

Na divisão de 10 por 5 o resto é 0.

  1 2  
15 10 5  
5 0    

Como o resto é zero, o mdc entre 15 e 10 é o número 5.

 

2

Exemplo 2


Obter, pelo Algoritmo de Euclides, o mdc entre 1128 e 336.


Resolução


Após as divisões sucessivas e os registros dos resultados nos locais apropriados, chega-se em:

  3 2 1 4
1128 336 120 96 24
120 96 24 0  

O mdc entre 1128 e 336 é 24.

→ Confira com uma calculadora de mmc ou de mdc entre dois números naturais clique aqui

 

Matemática de Loterias



As pessoas normalmente fazem apostas na Mega Sena, pelo valor acumulado mais alto ou pelo simples hábito. Sabemos que a probabilidade de levar o prêmio principal é bem baixo. Contudo, será que vale mais a pena apostar numa Mega Sena que pode pagar R$30 milhões ou numa Timemania que pode premiar R$5 milhões?

Pensar exclusivamente na questão PROBABILIDADE é a melhor referência. Porém, aliado a isso, o VALOR DO PRÊMIO e o VALOR DA APOSTA também são interessantes de levar em conta. Vale mais a pena gastar seus REAIS na MEGA SENA que paga R$30 milhões ou numa Timemania que pode premiar R$5 milhões? A probabilidade da Timemania é melhor (em relação à da Mega) e o valor da aposta é mais baixo.

É certo que O VALOR ALTO DE PRÊMIO seduz muito e valor baixo desmotiva o interesse. Porém, se o valor alto vem de um jogo cujas chances de ganho são muito discrepantes no confronto direto, muitas vezes é mais interessante ir atrás de um prêmio menor se as suas chances de êxito vencem, mesmo sendo uma premiação inferior.

De acordo com a relação PRÊMIO A CONQUISTAR e PROBABILIDADE DE LEVAR, CUSTO DA APOSTA, eu calculei uma NOTA DE MAIS VALIA. Veja na ORDEM (de cima para baixo) onde vale mais a pena (NOTA 100) gastar seu real até onde menos vale a pena apostar, levando tudo isso em consideração

A TABELA A SEGUIR MUDA DE ACORDO COM OS VALORES DOS PRÊMIOS, CUSTOS e REGRAS. CONFIRA A ANÁLISE NA DATA INFORMADA.

Para poder apostar nos concursos internacionais clique na imagem a seguir ou CLIQUE AQUI.

Se você não entende PORCENTAGEM é hora de estudar mais no meu site CLIQUE AQUI