Professor Cardy

web
statistics

Estou remodelando a área de exercícios e atividades que foi perdida faz um tempo (pela troca de servidores)
Atividades para impressão do Ensino Médio e Vestibular
Atividades para impressão do Ensino Fundamental

Definição

Teorema de D’Alembert

Um polinômio P(x) é divisível por (x – a) se e somente se P(a) = 0.

Atenção

O Teorema de D'Alambert é extremamente útil para se descobrir o resto da divisao de um polinômio por outro, na forma $$x-a$$, onde $$a$$ é uma constante. Sem precisar fazer a divisão completa!

1

Exemplo 1


Determinar o resto da divisão de $$P(x) = x^3-2x^2-7$$ por $$x-2$$.


Resolução


Pelo Teorema de D’Alembert, basta calcular $$P(2)$$.

$$P(2) = 2^3-2*2^2-7 = -7$$

Portanto, o resto da divisão de `P(x) = x^3-2x^2-7` por `x-2` é `-7`.
2

Exemplo 2


Dado o gráfico de $$P(x)$$, com $$P(1) = P(3) = 0$$ a seguir, verifique se $$P(x)$$ é divisível por:

a) $$x-1$$

b) $$x - 2$$


Resolução


a) Para $$P(x)$$ ser divisível por $$x-1$$ é necessário e suficiente que $$P(1) = 0$$. Pelo gráfico apresentado, é direto que $$P(1) = 0$$. Logo $$P(x)$$ é divisível por $$x-1$$.

 

b) Para $$P(x)$$ ser divisível por $$x-2$$ é necessário e suficiente que $$P(2) = 0$$. Pelo gráfico apresentado, para $$x$$ entre $$1$$ e $$3$$ o polinómio $$P(x)$$ não se anula. Logo $$P(x)$$ não é divisível por $$x-2$$.


Divisibilidade de Polinômios

O conceito de divisibilidade entre dois polinômios depende do anel a que se extende.

Basicamente, depende se aceitamos que os coeficientes dos polinômios sejam só naturais, inteiros, racionais, reais, complexos, etc.

Em se tratando de problemas de vestibulares, notam-se algumas omissões nas perguntas de divisibilidade de polinômios, acerca do tipo de polinômio considerado (natural, inteiro, racional, etc.). Assim, não caracterizam o tipo de coeficiente aceito.

De modo geral:

1) Perguntado se $$P(x)$$ é divisível por $$x-a$$ com $$a$$ racional, considere a divisão podendo envolver polinômios de coeficientes racionais.

2) Perguntado se $$P(x)$$ é divisível por $$x-a$$ com $$a$$ irracional, considere a divisão podendo envolver polinômios de coeficientes reais.

3) Perguntado se $$P(x)$$ é divisível por $$x-a$$ com $$a$$ um número imaginário, considere a divisão podendo envolver polinômios de coeficientes complexos.

Veja mais exercícios sobre polinômios (clique aqui)