Dieser Rechner zerlegt eine Zahl in ihre Primfaktoren und listet alle ihre natürlichen Teiler auf. Geben Sie eine ganze Zahl zwischen 1 und 1.000.000 ein.
1) Beziehung zu Vielfachen von 6: Jede Primzahl größer als 3 ist immer entweder eine weniger oder eine mehr als ein Vielfaches von 6.
Beispiel: `2749` ist 1 mehr als `2748` (Vielfaches von 6).
2) Quadrat minus 1 teilbar durch 24: Für jede Primzahl größer als 3 ist das Quadrat minus 1 immer durch 24 teilbar.
Beispiel: Das Quadrat von `2749` ist `7557001`. Zieht man 1 ab, erhält man `7557000`. Beachten Sie, dass `7557000 ÷ 24 = 314875`.
3) Differenz von Quadraten: Jede Primzahl größer als 2 kann als Differenz der Quadrate zweier positiver Ganzzahlen dargestellt werden.
Beispiel: `2749 = 1375^2 - 1374^2 = 1890625 - 1887876`
4) Summe von zwei Quadraten: Jede Primzahl der Form `4n+1` (wobei n eine positive ganze Zahl ist) kann als Summe von zwei Quadraten dargestellt werden.
Beispiel: `2749 = 30^2 + 43^2 = 900 + 1849`, wobei `2749 = 4 × 687 + 1`.
5) Form `4n+1` oder `4n-1`: Mit Ausnahme der Zahl 2 folgen alle Primzahlen dem Muster `4n+1` oder `4n-1`, wobei `n` eine natürliche Zahl ist.
Beispiel: `2749` ist von der Form `4n+1`, wobei `n = 687`.