Simulado

Simulado Gerado com Sucesso!
IBMEC
Matemática

A seguir, você encontra 20 questões aleatórias do meu banco de dados.

Para fazer outra seleção de problemas, basta dar um refresh no seu navegador.

Confira o seu desempenho no final.

>>Questão 1 — IBMEC

Em cada um dos cinco quartos — A, B, C, D e E — de um hotel há um e apenas um hóspede, conforme a figura ao lado. Sabe-se que:

• um hóspede assassinou um dos outros quatro;
• se o assassino e a vítima se hospedavam em quartos que possuem o mesmo número de quartos contíguos, então o hóspede do quarto C é o assassino;
• se o assassino e a vítima estavam em quartos de tamanhos diferentes, então o criminoso estava no quarto A ou D.

Com base nessas informações, conclui-se que a vítima era o hóspede do quarto

a) A.
b) B.
c) C.
d) D.
e) E.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 2 — IBMEC

A figura abaixo mostra o mapa do continente Oval, que possui dez países, localizado no legendário planeta Redondo.

Supondo que as viagens descritas abaixo sejam feitas por terra, pode-se afirmar que

a) para viajar do país F para o país I, é necessário passar por outros três países além de F e I.
b) para viajar do país B para o país H, é necessário passar pelo país C.
c) para sair do país B, é necessário e suficiente passar pelo país A.
d) para viajar do país E para o país H, é suficiente atravessar o país C além de E e H.
e) para viajar do país A para o país I, é suficiente passar por outros dois países além de A e I.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 3 — IBMEC

Uma mercadoria sofreu um aumento de (2x)%, sendo x um número positivo. Algum tempo depois, em uma promoção, ela foi vendida com desconto de x%. Se o total pago pelo cliente nessa ocasião foi igual ao preço da mercadoria praticado antes do aumento, o valor de x é aproximadamente

a) 33,3.
b) 41,4.
c) 50,0.
d) 66,7.
e) 100,0.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 4 — IBMEC

No triângulo ADE da figura, em que B e C são pontos dos lados AD e AE, respectivamente, AB=AC, BC=BD e CD=CE.

Então,

a) x = 48º.
b) x = 50º.
c) x = 52º.
d) x = 54º.
e) x = 56º.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 5 — IBMEC

Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados e Y refrigerantes nessa lanchonete, gastou o mesmo que Luana, que comprou Y salgados e 3Y refrigerantes. Então, pode-se concluir que

a) Y = X.
b) Y = 2X.
c) X = 2Y.
d) Y = 3X.
e) X = 3Y.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 6 — IBMEC

Para estimular a venda de seus produtos, uma conhecida marca de cervejas criou um recipiente térmico para manter as latas da bebida geladas, e o colocou à venda em três tamanhos: pequeno, médio e grande. Os três tamanhos têm, respectivamente, capacidades para armazenar 16, 54 e 128 latas de cerveja, além do espaço para o gelo, que deve ser adicionado junto com as latas para mantê-las geladas. Considere que:

• os recipientes têm todos um formato cilíndrico, sendo a altura igual ao dobro do diâmetro da base,
• o volume de cada recipiente é diretamente proporcional à quantidade de latas que comporta,
• os preços dos recipientes são proporcionais à área total da superfície do cilindro, dado que o principal custo do produto refere-se ao material de isolamento térmico.

Se o recipiente pequeno custa R$60,00, a soma dos preços de um recipiente médio mais um recipiente grande é igual a

a) R$187,50.
b) R$281,25.
c) R$375,00.
d) R$468,75.
e) R$562,50.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 7 — IBMEC

Um dos mais famosos problemas da história da matemática, o “último teorema de Fermat” foi resolvido em 1995 pelo inglês Andrew Wiles. Demonstrar esse teorema representou um grande desafio aos mais brilhantes matemáticos por mais de 350 anos, apesar de seu enunciado ser relativamente simples, como mostrado a seguir:

Se n é um número natural maior do que 2, então a equação

xn = yn + zn

não apresenta soluções em que x, y e z sejam simultaneamente números inteiros positivos.

Já para n = 2, a equação xn = yn + zn admite soluções nas condições do teorema, enunciadas acima. Uma dessas
soluções é dada por

a) x = 1, y = 1 e z = 0.
b) x = 1, y = 0,6 e z = 0,8.
c) x = 13, y = 12 e z = 5.
d) x = , y = 1 e z = 2.
e) x = 3, y = 4 e z = 5.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 8 — IBMEC

Em certo país, sabe-se que:

• todo médico usa roupa branca;
• nem todas as pessoas que usam roupa branca trabalham em hospitais.
Uma pessoa faz as afirmações seguintes referindo-se a esse país:

I. Somente médicos trabalham em hospitais.
II. Existem médicos que não trabalham em hospitais.
III. Algumas pessoas que trabalham em hospitais não usam roupa branca.

Pode-se concluir que é(são) necessariamente verdadeira(s)

a) as afirmações II e III.
b) a afirmação III.
c) a afirmação II.
d) a afirmação I.
e) nenhuma das três afirmações.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 9 — IBMEC

Observe o diagrama abaixo.

Para preenchê-lo, serão obedecidas as seguintes regras:

• cada uma das três etapas (I, II e III) é iniciada com o lançamento de uma moeda honesta para decidir qual operação será efetuada naquela etapa: caso a face voltada para cima seja cara, efetua-se uma adição (+), e, caso seja coroa, efetua-se uma multiplicação (×);
• nas etapas I e II, será efetuada a operação (definida pelo sorteio) entre os números indicados nos quadrados, colocando-se o resultado no círculo correspondente;
• na etapa III, será efetuada a operação (definida pelo sorteio) entre os números obtidos nos dois círculos, colocando-se o resultado no triângulo.

Nessas condições, a probabilidade de que o resultado colocado no triângulo seja igual a 4 é

a) 1/8
b) 1/4
c) 1/3
d) 3/8
e) 1/2

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 10 — IBMEC

Considere que, nos seguintes enunciados, a palavra jovem sempre esteja relacionada à mesma pessoa.

(I) “Se, para ingressar no curso de Administração que pretendia, um jovem concorreu com 749 vestibulandos para 50 vagas, então para ingressar no programa de trainee da empresa que ele quer, agora que está se formando, ele está concorrendo com 14999 candidatos para apenas 30 vagas.”

(II) “A relação candidato/vaga no vestibular do curso de Administração que o jovem pretendia foi igual a 15.”

(III) “A relação candidato/vaga no processo de trainee que o jovem quer é igual a 500.”

Sabe-se que, para que um condicional do tipo “se A então B” seja falso, é necessário e suficiente que A seja uma sentença verdadeira e que B seja uma sentença falsa. Com isso, para concluir que o condicional apresentado no quadro (I) é falso,

a) é necessário saber que a informação do quadro (II) é verdadeira e a informação do quadro (III) é falsa.
b) é suficiente saber que a informação do quadro (II) é verdadeira e a informação do quadro (III) é falsa.
c) é necessário saber que a informação do quadro (II) é falsa e a informação do quadro (III) é verdadeira.
d) é suficiente saber que a informação do quadro (II) é falsa e a informação do quadro (III) é verdadeira.
e) é necessário obter mais informações além da veracidade ou da falsidade das informações dos quadros (II) e (III).

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 11 — IBMEC

Considere a afirmação abaixo, feita a respeito de um número natural n:

“Se n é múltiplo de 8 e n é quadrado perfeito, então n é menor do que 20.”

Dependendo do valor que se atribui a n, essa afirmação pode se tornar verdadeira ou falsa. Dentre os valores apresentados abaixo para n, o único que torna a afirmação FALSA é:

a) 81.
b) 64.
c) 24.
d) 16.
e) 9.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 12 — IBMEC

Na figura abaixo, a circunferência maior tem raio 4cm, há duas circunferências de raio 2cm, quatro circunferências de raio 1cm, quatro de raio 0,5cm, quatro de raio 0,25cm, e assim por diante. Considere que
• a é a área da região branca interior à circunferência de raio 4cm e exterior às circunferências de raio 2cm,
• b é a soma das áreas das demais regiões brancas, ou seja, interiores às circunferências de raio 2cm,
• c é a soma das áreas de todas as regiões pintadas de cinza.

Segue que
a) a < b < c.
b) b < a < c.
c) a = b = c.
d) a + b = c.
e) a + c = b.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 13 — IBMEC

Os cinco filhos da família Silva foram colocados em fila para tirar uma foto. A fila foi organizada em ordem crescente de idades, com o mais novo ocupando o primeiro lugar e o mais velho ocupando o último. Sabe-se que:

(1) Guilherme ocupou a posição imediatamente anterior à posição de Marcelo na fila.

(2) Marcelo é mais velho do que Lucas, mas é mais novo do que Gabriel.

(3) Gabriel NÃO é o filho mais velho.

Se um dos filhos chama-se Gustavo, pode-se concluir que a segunda e a quarta posições da fila foram ocupadas, respectivamente, por:

a) Guilherme e Gabriel.
b) Guilherme e Gustavo.
c) Gustavo e Marcelo.
d) Lucas e Marcelo.
e) Lucas e Gabriel.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 14 — IBMEC

Quando sai de casa até as 6h30min, Rui gasta 30 minutos para chegar ao seu trabalho. Ele percebeu também que, para cada 2 minutos que o horário de saída ultrapassa as 6h30min, o tempo de percurso aumenta 1 minuto, devido ao trânsito. De acordo com esses dados, se num dia Rui chegou ao trabalho às 7h39min, podese concluir que ele saiu de casa às:

a) 7h09min.
b) 7h01min.
c) 6h56min.
d) 6h50min.
e) 6h43min.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 15 — IBMEC

Num tribunal foram interrogados dois envolvidos em um crime, Fulam e Rotiele. Um deles sempre diz a verdade e o outro sempre mente. Do depoimento de Fulam foi extraída a frase

"Se Rotiele confiou em mim, então este júri também confia."

E do depoimento de Rotiele foi extraída a frase

"É impossível que Fulam somente cuide do dinheiro de todas as pessoas que não cuidam do próprio dinheiro."

Dessa forma, a afirmação verdadeira entre as alternativas abaixo é

a) "O júri não confia em Fulam."
b) "Fulam é o que diz a verdade."
c) "Rotiele não confiou em Fulam."
d) "Se Rotiele está no júri, então ainda confia em Fulam."
e) "O trecho acima citado do depoimento de Rotiele também poderia ter aparecido no depoimento de Fulam."

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 16 — IBMEC

Se a afirmação “Se não é verdade eu dizer que eu não saiba onde ela não está, então ela não sabe dizer onde eu não estou.” é falsa, então

a) eu sei onde ela não está e ela sabe onde eu não estou.
b) eu sei onde ela está e ela sabe onde eu não estou.
c) eu sei onde ela não está e ela sabe onde eu estou.
d) eu sei onde ela está e ela sabe onde eu estou.
e) eu não sei onde ela não está e ela não sabe onde eu não estou.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 17 — IBMEC

As três testemunhas de um crime (T1, T2, T3) não quiseram delatar diretamente o criminoso. Por outro lado, o infrator é uma das seis pessoas que foram encontradas na cena do crime. A polícia propôs então o seguinte jogo de reconhecimento para as três testemunhas:

• Todas as combinações de 4 nomes, escolhidos entre os 6 nomes dos suspeitos, serão escritas em diferentes cartões.
• A testemunha T1 seleciona um cartão que contenha o nome do criminoso, em seguida a testemunha T2 seleciona outro cartão que também contenha o nome do criminoso, depois a testemunha T3 faz o mesmo,depois a testemunha T1 volta a escolher e assim por diante, até que o investigador consiga, por eliminação, descobrir o criminoso.

O criminoso pode ser revelado no menor número de passos possível (p passos) ou no maior número de passos possível (q passos). Nessas duas possibilidades, o passo p e o passo q corresponderiam, respectivamente, à escolha.

a) da testemunha T1 e da testemunha T2.
b) da testemunha T1 e da testemunha T3.
c) da testemunha T3 e da testemunha T1.
d) da testemunha T3 e da testemunha T2.
e) da testemunha T2 e da testemunha T1.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 18 — IBMEC

Para responder a essa questão, considere que todo indivíduo que contrai dengue apresenta febre alta e dores musculares.
Carlos e Sílvio deram entrada num hospital com suspeita de dengue. Carlos apresentava febre alta e dores musculares, enquanto Sílvio se queixava de dores musculares, mas não apresentava febre. A partir dessas informações, pode-se concluir que

a) Carlos e Sílvio certamente contraíram dengue.
b) Carlos certamente contraiu dengue, e Sílvio pode ou não ter contraído a doença.
c) Carlos certamente contraiu dengue, e Sílvio certamente não contraiu a doença.
d) Carlos pode ou não ter contraído dengue, o mesmo ocorrendo com Sílvio.
e) Carlos pode ou não ter contraído dengue, e Sílvio certamente não contraiu a doença.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 19 — IBMEC

A desigualdade triangular é um princípio da geometria que estabelece o seguinte:

“Qualquer lado de um triângulo é sempre menor do que a soma dos outros dois”.

Considere que A, B, C e D são vértices de um quadrilátero. Se AC é uma das diagonais desse quadrilátero, a única afirmação que não é necessariamente verdadeira é

a) AC < AB + BC.
b) AC < AD + DC.
c) AB < AC + BC.
d) DC < AC + DC.
e) DC < AB + BC.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 20 — IBMEC

Se a>1, então a equação

ax + ax2 – a = 0

tem

a) nenhuma solução, independente do valor de a.
b) nenhuma ou apenas uma solução, dependendo do valor de a.
c) nenhuma, apenas uma ou apenas duas soluções, dependendo do valor de a.
d) apenas uma solução, independente do valor de a.
e) apenas duas soluções, independente do valor de a.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


(desabilite o bloqueador de pop-up)

Obs. Você pode, após ver o seu boletim, refazer estas mesmas questões (não dê refresh no navegador para mantê-las!).

Gerador de Simulados

Gere o seu simulado personalizado

Matéria

Questões

Instituição

Simulados VIP







Gerador Antigo

Gere o seu simulado personalizado (todas as questões na mesma tela)

Matéria

Instituição

Questões



Gerador de Provas

Sobre o conteúdo das questões:

Matemática


Sobre o conteúdo das questões:

Matemática


Professor Cardy
Simulado Enem 2014

Simulado ENEM 2014

Teste seus conhecimentos com questões do ENEM

Aprenda mais sobre isso! »

Simulado FUVEST

Simulado FUVEST 2014

Teste seus conhecimentos com questões da FUVEST

Aprenda mais sobre isso! »

Simulado Pesadelo

Simulado Pesadelo

Teste seus conhecimentos com questões mais difíceis do site

Aprenda mais sobre isso! »

Simulado Raciocínio Lógico

Simulado Raciocínio Lógico

Teste seus conhecimentos com questões de Raciocínio Lógico

Aprenda mais sobre isso! »

Calculadora de Porcentagem

Calculadora de Porcentagem

Utilize o aplicativo para aprender porcentagem

Aprenda mais sobre isso! »

Calculadora de Imposto de Renda

Calculadora de Imposto de Renda

Retido na Fonte mensal

Aprenda mais sobre isso! »

Gerador de Provas

Desafios de Lógica

Desafios de Raciocínio Lógico

Aprenda mais sobre isso! »

Gerador de Listas de Exercícios

Gerador de Listas de Exercícios

De todas as disciplinas do Ensino Médio

Aprenda mais sobre isso! »




 

ProfCardy.Com

2001 — 2014

14 anos on line!
GRATUITAMENTE, com acesso TOTAL e completamente liberado!