Expandindo `5095` em potências de `13`
`(5095)_{10} =`
`=2\cdot 13^{3} + 4\cdot 13^{2} + 1\cdot 13^{1} + C\cdot 13^{0}`
`= (\text{241C})_{13}`
VALORES:
A | B | C |
10 | 11 | 12 |
`(5095)_{10} =`
`=2\cdot 13^{3} + 4\cdot 13^{2} + 1\cdot 13^{1} + C\cdot 13^{0}`
`= (\text{241C})_{13}`
VALORES:
A | B | C |
10 | 11 | 12 |