Professor Cardy



Cardicas > Quociente Eleitoral. Cálculo do Coefiente Eleitoral

Se numa eleição para 5 vagas para Deputado Federal tivéssemos a seguinte situação, apurados os votos válidos:

Arquimedes
379.619
Galois
379.571
Moivre
379.350
Gauss
310.037
Euler
204.522
Jacobi
104.501
Euclides
19.031
Tales
1.500
Pascal
830

 

Quem você diria que seriam os cinco eleitos? Se sua resposta foi os cinco mais votados: Arquimedes, Galois, Moivre, Gauss e Euler você errou!

Um dos principais motivos das pessoas errarem a resposta da pergunta anterior é que se esquecem (ou, talvez não saibam) de considerar que o voto é do partido e não do candidato. O que importa - mesmo - é a votação que o conjunto dos candidatos de um partido consegue e não o número de votos individuais de um candidato isolado. É por isso que entra o chamado Quociente Eleitoral ou Coeficiente Eleitoral, um importantíssimo parâmetro responsável por interferir num eleição, no caso, para o Poder Legislativo.

A seguir vou explicar, em parte, como funciona uma eleição para o Poder Legislativo

Para uma democracia real, não basta exercer o poder da cidadania escolhendo alguém que nos represente - é preciso fazer-se representar que é mais do que só escolher - é escolher e acompanhar.

E para se fazer representar é necessário o devido acompanhamento dos atos políticos e administrativos de nossos governantes. O acompanhamento pode ser num primeiro momento sondar todas as etapas de uma votação e exigir transparência das estruturas de uma eleição.

No caso brasileiro existe numa das etapas legais das votações para Senadores, Deputados Federais, Estaduais, Distritais (Brasília) e Vereadores algo mais difícil de entender para a pessoa comum. Esta parte obscura das votações se deve aos quesitos matemáticos do processo de eleição onde se deve considerar o QUOCIENTE ELEITORAL para se saber quantos candidatos um partido poderá levar para o Congresso, Câmara ou Assembléias Legislativas.

Bom, obscuro não quer dizer errado. É que vai contra o senso comum e natural das pessoas que os ganhadores de uma eleição devem ser, na sua categoria, os mais votados em ordem decrescente. De fato é assim para as eleições do Poder Executivo (Presidente, Governador e Prefeito), mas não é desse modo para o Poder Legislativo. Neste último caso haverá o quociente / coeficiente eleitoral para definir um parâmetro eleitoral fundamental.

Vamos ver como funciona este tal de quociente / coeficiente eleitoral estabelecendo como exemplo uma eleição para Deputado Federal para eleger representantes de um estado fictício denominado "Penta", que tem 5 Deputados.

mathematics
mathematics
Deputado Federal
mathematics
mathematics
Apesar de ser "Federal" cada estado escolhe os seus, em número pré-definido. Os eleitores de um estado só podem votar nos candidatos locais.
mathematics

Assim um eleitor de Minas Gerais só pode votar aos candidatos registrados para Deputado (Federal e Estadual) de Minas Gerais e não, por exemplo, para candidatos a Deputado (Federal e Estadual) de Goiás.

O único tipo de voto para cargo eletivo que tem validade nacional é para Presidente da República. Para Deputado, Senador e Vereador, eleitores registrados num local X só podem votar em candidatos registrados no local X.

Enfim, continuando, suponha que todos os votos na eleição já tenham sido computados. Além disso, considere num exemplo fictício que:

1) Votos válidos no estado chamado de Penta: 2.000.001

2) Vagas pré-determinadas para Deputado Federal a serem ocupadas por candidatos do estado Penta: 5.

Definição

Quociente Eleitoral - Texto adaptado, para explicação, do art. 106 do Código Eleitoral

É a parte inteira da divisão entre o número de votos válidos* pelo total de cadeiras em pleito. Despreza-se a fração, se igual ou inferior a 0,5, arredondando-a para 1 se superior.

(*) votos válidos, ver LEI Nº 9.604 de 1997 - do total de votos efetivados numa eleição, descontam-se os votos em branco e os votos nulos para contar o total de votos válidos

 

Exemplo - Obter o Quociente Eleitoral para Deputado Federal no Estado Penta

   
 

Lembrando que estamos usando no exemplo.

1) Votos válidos no Penta: 2.000.001

2) Vagas pré-determinadas para Deputado Federal a serem ocupadas por candidatos de Penta: 5.

Dividimos 2.000.001 por 5 cujo resultado é 400.000,2.

A parte inteira de 400.000,2 é 400.000.

O Quociente Eleitoral para Deputado Federal no Penta é 400.000.

 

mathematics
mathematics
Quociente Eleitoral
mathematics
mathematics
Varia de região para região porque cada uma delas tem o seu número de votos apurados como válidos e também muda o número de vagas a serem preenchidas.
mathematics

A partir deste quociente / coeficiente eleitoral 400.000 é que vão ser distribuídas entre os Partidos Políticos as 5 vagas de Deputado Federal do exemplo do Estado Penta.

Repare que as vagas são dadas aos Partidos Políticos. Sim, cada partido político (que tem pelo menos um inscrito no respectivo pleito) terá direito a um determinado número de vagas. A vaga primeiramente vai para o partido. Os mais votados de cada partido/coligação, dai sim, em ordem decrescente serão eleitos para o cargo.

Digamos que em nossas eleições sejam disputadas por 5 partidos, sendo que há uma Coligação Partidária envolvendo 3 dos partidos (PC + PE + PP). Assim, teremos 2 partidos e uma coligação de outros 3 partidos. Destaquei os candidatos mais votados em cada partido/coligação:

mathematics
mathematics
Coligação Partidária
mathematics
mathematics
Coligação Partidária é a união de dois ou mais partidos com vistas à apresentação conjunta de candidatos a uma determinada eleição.
mathematics

Resultados obtidos na eleição:

Partido Heptagonal
Gauss
310.037
Euler
204.522
Jacobi
104.501
Outros
125.840
Total
744.900
Partido Vetorial
Arquimedes
379.619
Euclides
18.031
Tales
1.500
Outros
0
Total
399.150
Coligação Cônicas
Galois PC
379.571
Moivre PP
379.250
Pascal PC
830
Outros (legenda PE)
60.000
Outros (legenda PP)
26.300
Outros (legenda PC)
10.000
Total
855.951
Definição

Quociente Partidário - Texto adaptado, para explicação, do art. 107 do Código Eleitoral

É a parte inteira da divisão entre o número de votos válidos* pelo quociente eleitoral (art. 107 do Código Eleitoral). Despreza-se a fração, qualquer que seja.

(*) votos válidos, ver LEI Nº 9.604 de 1997 - do total de votos efetivados numa eleição, descontam-se os votos em branco e os votos nulos para contar o total de votos válidos

Primeiro vamos calcular, usando o quociente / coeficiente eleitoral 400.000 relativo ao Estado Penta, quantas vagas serão atribuidas a estes 3 partidos/coligações. Considera-se para isso o TOTAL de votos que cada partido conquistou nas eleições, ou seja:

Legenda Partidária
Votos (A)
Cálculo (B)
Resultado (C)
Partido Heptagonal
744.900
744.900 / 400.000
1,86
Partido Vetorial
399.150
399.150 / 400.000
0,99
Coligação Cônicas
855.951
855.951 / 400.000
2,13

A partir da parte inteira de cada resultado são distribuídas as primeiras vagas.

Legenda Partidária
Votos (A)
Cálculo (B)
Resultado (C)
Quociente Partidário (D)
Partido Heptagonal
744.900
744.900 / 400.000
1,86
1
Partido Vetorial
399.150
399.150 / 400.000
0,99
0
Coligação Cônicas
855.951
855.951 / 400.000
2,13
2

Resulado Parcial:

Partido Heptagonal
Gauss (eleito)
310.037
Euler
204.522
Jacobi
104.501
Outros
125.840
Total
744.900
Partido Vetorial
Arquimedes
379.619
Euclides
18.031
Tales
1.500
Outros
0
Total
399.150
Coligação Cônicas
Galois PC (eleito)
379.571
Moivre PP (eleito)
379.250
Pascal PC
830
Outros (legenda PE)
60.000
Outros (legenda PP)
26.300
Outros (legenda PC)
10.000
Total
855.951

Como, com o resultado parcial, só 3 das 5 vagas foram preenchidas, restaram 2 vagas.

mathematics
mathematics
Vagas Remanescentes
mathematics
mathematics
O partido que não alcançou o quociente eleitoral, não concorre à distribuição de lugares (art. 109, § 2º, do Código Eleitoral).
mathematics

Assim, o Partido Vetorial está fora da eleição e não ganhou nenhuma vaga apesar de ter tido o candidato Arquimedes com a maior votação dentre todos os concorrentes.

Continuando.

Repetindo-se o procedimento a seguir, para cada vaga que restar, devemos compor para cálculos:

1) Operação: dividir a votação de cada partido pelo nº de lugares por ele obtidos + 1 (art. 109, nº I do Código Eleitoral). Ao partido que alcançar a maior média, atribui-se a 1ª sobra.

Legenda Partidária
Votos (A)
Cálculo (B)
Resultado (C)
Quociente Partidário(D)
Quociente Partidário + 1 (E)
Cálculo
(C / E)
Resultado
Partido Heptagonal
744.900
744.900 / 400.000
1,86
1
2
1,86 / 2
0,93
Partido Vetorial
Coligação Cônicas
855.951
855.951 / 400.000
2,13
2
3
2,13 / 3
0,71

Assim, o Partido Heptagonal ganhou mais uma vaga.

Partido Heptagonal
Gauss (eleito)
310.037
Euler (eleito)
204.522
Jacobi
104.501
Outros
125.840
Total
744.900
Partido Vetorial
Arquimedes
379.619
Euclides
18.031
Tales
1.500
Outros
0
Total
399.150
Coligação Cônicas
Galois PC (eleito)
379.571
Moivre PP (eleito)
379.250
Pascal PC
830
Outros (legenda PE)
60.000
Outros (legenda PP)
26.300
Outros (legenda PC)
10.000
Total
855.951

Como resta uma vaga ainda, recalculamos para ver quem pode recebê-la.

2 ) Operação: se houver outra sobra, repete-se a divisão. Agora, por exemplo, como o Partido Heptagonal ganhou mais uma vaga, beneficiado com a 1ª sobra, já conta com 2 lugares, aumentando o divisor para 3 (2+1) (art. 109, nº II, do Código Eleitoral).

Legenda Partidária
Votos (A)
Cálculo (B)
Resultado (C)
Quociente Partidário(D)
Quociente Partidário + 1 (E)
Cálculo
(C / E)
Resultado
Partido Heptagonal
744.900
744.900 / 400.000
1,86
2*
3
1,86 / 3
0,62
Partido Vetorial
Coligação Cônicas
855.951
855.951 / 400.000
2,13
2
3
2,13 / 3
0,71

Portanto, a Coligação Cônicas ganhou mais uma vaga. Consolida-se:

Partido Heptagonal
Gauss (eleito)
310.037
Euler (eleito)
204.522
Jacobi
104.501
Outros
125.840
Total
744.900
Partido Vetorial
Arquimedes
379.619
Euclides
18.031
Tales
1.500
Outros
0
Total
399.150
Coligação Cônicas
Galois PC (eleito)
379.571
Moivre PP (eleito)
379.250
Pascal PC (eleito)
830
Outros (legenda PE)
60.000
Outros (legenda PP)
26.300
Outros (legenda PC)
10.000
Total
855.951

Repare fatos curiosos (mas possíveis de ocorrerem na prática) sobre o nosso sistema eleitoral:

I) que apesar de Arquimedes ter muito mais votos que TODOS, não conquistou sua vaga. Demonstrou-se, matematicamente aqui, que o número isolado de votos não garante eleição de um candidato - ele também depende dos resultados do partido por conta do quociente / coeficiente eleitoral.

II) Pascal foi eleito com um número muito baixo de 830 votos! Simplesmente devido ao fato da Coligação Cônicas ter direito a 3 vagas pela sua grande votação em conjunto dos seus outros candidatos. Ele, sendo o terceiro mais votado do seu partido, tem direito à vaga. Demonstrou-se, matematicamente aqui, que o número baixo de votos não significa necessariamente a exclusão da eleição de um candidato - ele também depende dos resultados do seu partido e dos resultados dos demais partidos.

III) Repare que o Partido da Elipse (PE), da Coligação Cônicas, não elegeu ninguém, mas alavancou a eleição de 2 (dois) candidatos do Partido da Circunferência e 1 (um) candidato do Partido da Parábola. Foi como se fosse uma "escada" eleitoral nesta aliança e só fortaleceram outros partidos.

IV) O Partido Vetorial, talvez se fizesse uma aliança com outro partido, poderia atingir o quociente / coeficiente eleitoral e eleger um ou dois candidatos. Se fosse feita uma aliança com o Partido da Elipse, Arquimedes certamente seria eleito na hipótese dos eleitores manterem a votação na legenda PE.

 

Assim, devido ao quociente / coeficiente eleitoral a eleição ficou assim:

Arquimedes
379.619
Galois (eleito pelo quociente partidário)
379.571
Moivre (eleito pelo quociente partidário)
379.350
Gauss (eleito pelo quociente partidário)
310.037
Euler (eleito pelas vagas remanescentes)
204.522
Jacobi
104.501
Euclides
19.031
Tales
1.500
Pascal (eleito pelas vagas remanescentes)
830

 

Exemplo: Divisão de 17 cadeiras num Estado onde votaram 50.037 eleitores.

1ª operação: Determinar o nº de votos válidos, deduzindo do comparecimento os votos nulos e os em branco (art. 106, § único do Código Eleitoral e art. 5º da Lei nº 9504 de 30/09/97).

Comparecimento 50.037 - Votos em branco
883
- Votos nulos
2.832
= Votos válidos 46.322

2ª operação: Determinar o quociente eleitoral, dividindo-se os votos válidos pelos lugares a preencher (art. 106 do Código Eleitoral). Despreza-se a fração, se igual ou inferior a 0,5, arredondando-a para 1 se superior.

Votos válidos
46.322
÷ nº de cadeiras
17
= 2.724,8 = Quoc. eleitoral
2.725

3ª operação: Determinar os quocientes partidários, dividindo-se a votação de cada partido (votos nominais + legenda) pelo quociente eleitoral (art. 107 do Código Eleitoral). Despreza-se a fração, qualquer que seja.

Partidos
Votação
Quociente Eleitoral
Quociente Partidário
A 15.992 ÷ 2.725 = 5,8 = 5
B 12.811 ÷ 2.725 = 4,7 = 4
C 7.025 ÷ 2.725 = 2,5 = 2
D 6.144 ÷ 2.725 = 2,2 = 2
E 2.237 ÷ 2.725 = 0,8 = 0 *
F 2.113 ÷ 2.725 = 0,7 = 0 *
Total = 13
(sobram 4 vagas a distribuir)

* Os partidos E e F, que não alcançaram o quociente eleitoral, não concorrem à distribuição de lugares (art. 109, § 2º, do Código Eleitoral).


4ª operação: Distribuição das sobras de lugares não preenchidos pelo quociente partidário. Dividir a votação de cada partido pelo nº de lugares por ele obtidos + 1 ( art. 109, nº I do Código Eleitoral). Ao partido que alcançar a maior média, atribui-se a 1ª sobra.

Partidos

A

B

C

D

Votação

15.992

12.811

7.025

6.144

Lugares +1 ÷

÷ 6 (5+1)

÷ 5 (4+1)

÷ 3 (2+1)

÷ 3 (2+1)

Médias

2.665,3

2.562,2

2.341,6

2.048,0

(maior média 1ª sobra)


5ª operação: Como há outra sobra, repete-se a divisão. Agora, o partido A, beneficiado com a 1ª sobra, já conta com 6 lugares, aumentando o divisor para 7 (6+1) (art. 109, nº II, do Código Eleitoral).

Partidos

A

B

C

D

Votação

15.992

12.811

7.025

6.144

Lugares +1

÷ 7 (6+1)

÷ 5 (4+1)

÷ 3 (2+1)

÷ 3 (2+1)

Médias

= 2.284,5

= 2.562,2

= 2.341,6

= 2.048,0

(maior média 2ª sobra)


6ª operação: Como há outra sobra, repete-se a divisão. Agora, o partido B, beneficiado com a 2ª sobra, já conta com 5 lugares, aumentando o divisor para 6 (5+1) (art. 109, nº II, do Código Eleitoral).

Partidos

A

B

C

D

Votação

15.992

12.811

7.025

6.144

Lugares +1

÷ 7 (6+1)

÷ 6 (5+1)

÷ 3 (2+1)

÷ 3 (2+1)

Médias

= 2.284,5

= 2.135,1

= 2.341,6

= 2.048,0

(maior média 3ª sobra)


7ª operação: Como há outra sobra, repete-se a divisão. Agora, o partido C, beneficiado com a 3ª sobra, já conta com 3 lugares, aumentando o divisor para 4 (3+1) (art. 109, nº II, do Código Eleitoral).

Partidos

A

B

C

D

Votação

15.992

12.811

7.025

6.144

Lugares +1

÷ 7 (6+1)

÷ 6 (5+1)

÷ 4 (3+1)

÷ 3 (2+1)

Médias

= 2.284,5

= 2.135,1

= 1.756,2

= 2.048,0

(maior média 4ª sobra)


OBS: No exemplo acima, a 7ª operação eliminou a última sobra. Nos casos em que o número de sobras persistir, prosseguem-se os cálculos até que todas as vagas sejam distribuídas.


RESUMO:

PARTIDOS

NÚMERO DE CADEIRAS OBTIDAS

pelo quociente partidário

pelas sobras

total

A

5

2

7

B

4

1

5

C

2

1

3

D

2

0

2

E

0

0

0

TOTAL

13

4

17